Introducción a la superconductividad eléctrica
La Superconductividad Frente al paso de una corriente electrica, los metales ofrecen una cierta resistencia: parte de la electricidad se transforma en calor y ello permite innumerables aplicaciones, como la plancha, la tostadora o elcalefactor electrico. Pero, en otros usos de la electricidad, sobre todoen su transmision a traves de cables, no resulta economico que aquella sepierda en forma de calor. En el a#o 1911 el fisico holandes Heike Kamerlingh Onnes descubrioque ciertos metales conducen la electricidad sin resistencia siempre ycuando se los haga "tiritar" cerca de la temperatura mas baja posible, unos 273 grados centigrados bajo cero. Dado que conseguir temperaturas tan bajas resulta muy costoso, elgran objetivo de la ciencia es encontrar materiales superconductores queoperen a temperaturas mas altas. Por ello, en el a#o 1986 se produjo un"boom" cuando los fisicos K. A. Muller y J. G. Bednorz encontraron queun material ceramico podia ser superconductor a una temperatura un poco masalta, unos 240 grados centigrados bajo cero. Desde entonces se han descubierto un gran numero de compuestos que presentan superconductividad si se los enfria solo con aire liquido, lo que permitira aplicaciones tecnologicas prometedoras. ¿Que se hace en superconductividad en Exactas?
Trabajando en un laboratorio de superconductividad
En el laboratorio se trabaja intensamente. Las diez o doce horas que duran las muy bajas temperaturas alcanzadas con el helio liquido deben ser aprovechadas al maximo. Ademas, previamente, se requieren unas ocho horas de preparativos. Por ello es comun que alguno de los investigadores pase la noche en el laboratorio para dejar todo listo y asi poder comenzar temprano al dia siguiente. Alli, las muestras de materiales superconductores, fabricadas porla Division de Fisica del Solido de la Comision Nacional de EnergiaAtomica, -con la que hay una estrecha colaboracion cientifica- sonsometidas a diferentes mediciones, a muy bajas temperaturas (por debajo de los 230 grados bajo cero). "Una de las tres lineas de investigacion que tenemos actualmente consiste en sacar o incorporar oxigeno en las muestras, sometiendolas a muy altas temperaturas, para ver que cambios se producen en la superconductividad", explica Bekeris. Otra de las investigaciones se basa en hacer pasar corrientes electricas desparejas a traves de una muestra, de modo que, en una parte,la corriente sea intensa, y en otra, debil. "Al medir la se#al endistintos puntos de la muestra, observamos que la corriente se organizadentro de ella", indica la investigadora, y aclara: "Lo que se mide en unlugar no depende de la corriente que pasa por alli, sino de su distribucionpor toda la muestra". Este es un experimento original del laboratorio y, segun Bekeris, puede tener aplicaciones interesantes ya que en los dispositivos que se fabriquen con estos materiales se van a producir estos fenomenos de corrientes desparejas, y es necesario saber que pasa en esas circunstancias. En el laboratorio se estudia tambien el tiempo que un material permanece magnetizado luego de ser sometido a un campo magnetico. El flujo magnetico suele quedar atrapado en los defectos del material y se va liberando de a poco. Para saber, con precision de microsegundos, cuanto tiempo le lleva liberarse, los investigadores someten a la muestra a unpulso muy corto de calor, con equipos de laser que proveen los fisicos Oscar Martinez y Mario Marconi. Este pulso de laser se aplica unos diez microsegundos despues de haber apagado el campo magnetico. Al hacer las mediciones se puede saber cuanto flujo magnetico habia, y cuanto se escapo,en ese lapso tan corto. Las peliculas delgadas de material superconductor para realizarestos experimentos son provistas por el Centro Atomico Bariloche. Para que sirve conocer cuanto tiempo queda atrapado el magnetismo? "Primero, esta es una pregunta basica, es decir que, conocer esa dinamica es conocer mas profundamente el comportamiento de estos superconductores. En cuanto a la posible relacion con aplicaciones, la famosa idea de levitacion magnetica se vincula, precisamente, con el anclaje del campo magnetico", se # a la Bekeris. La investigadora explica que, para que un material genere unafuerza repulsiva lo suficientemente intensa como para levantar su propiopeso, se necesitaria una magnetizacion muy alta, y esta puede lograrsemediante materiales que posean un gran anclaje de flujo magnetico. "Lo que estudiamos es cuanto tiempo dura el anclaje. Si este sedegrada rapidamente, no sirve", enfatiza la investigadora. Son las diez de la ma#ana, las maquinas licuefactoras se calmaron yahora comienza el verdadero trabajo, preciso y minucioso, para desentra#arlos enigmas de la superconductividad, y este es el camino obligado paraalcanzar los tan ansiados superconductores "calientes".
Fabricación por medio de reacciones en estado sólido de cerámicas superconductoras
Los materiales con características de superconductividad, presentan muy buenas expectativas respecto a su utilización en áreas donde los materiales tradicionales han encontrado sus límites. Durante 1995 se desarrolló un proyecto titulado "Conformado por Extrusión de Materiales Superconductores", donde se precisó cuantitativamente la dependencia de la estructura de la solución sólida Nd[1+x]Ba[2-x]Cu3O[7+d] y Bi2Sr[2+x]Ca[1+x]Cu2On para diferentes contenidos de oxigeno 1<=d<=0 y para algunos x selectos (0<=x<=0.5).
Las propiedades eléctricas y estructurales de estos compuestos, dependen fuertemente de la cantidad de oxígeno que contienen; muestras muy desoxigenadas, presentan más de una fase cristalina.
Luego de la obtención de los polvos con las características requeridas, se procedió a la manufacturación de elementos para comprobar sus propiedades de superconductividad.
El método de conformado fue la extrusión en matrices de acero, considerando los parámetros reológicos para la preparación adecuada de la mezcla y los de trabajo que permiten la obtención de cuerpos cerámicos manipulables, así como las condiciones de sinterización del cuerpo cerámico.
Desarrollo y fabricación de piezas a base de carburo de silicio: materiales permeables, materiales compuestos, materiales tixotrópicos.
Los avances logrados en las operaciones minero-metalúrgicas, han generado una demanda de materiales con propiedades únicas que soporten las severas condiciones de trabajo impuestas por las exigencias de mayor productividad en dichas faenas. Los materiales compuestos , cerámicos de matriz metálica, son los que satisfacen estos nuevos requerimientos de productividad y menores costos específicos de operación. El objetivo en este desarrollo fue la producción de cermets de carburo de silicio infiltrado con aleaciones de cobre. El problema esencial que se debió resolver, fue la compatibilidad de la fase cerámica con el metal o su aleación de tal forma que la infiltración ocurra ocupando debidamente los poros contenidos en la microestructura cerámica, sin que ocurra una reacción y, sin embargo, se logre una apropiada adhesión cerámica-metal. La configuración de la porosidad.
No hay comentarios:
Publicar un comentario